Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.28.23285135

ABSTRACT

Introduction: Migrant healthcare workers played an important role during the COVID-19 pandemic, but data are lacking especially for high-resourced European healthcare systems. This study aims to research migrant healthcare workers through an intersectional health system-related approach, using Germany as a case study. Methods. An intersectional research framework was created and a rapid scoping study performed. Secondary analysis of selected items taken from two COVID-19 surveys was undertaken to compare perceptions of national and foreign-born healthcare workers, using descriptive statistics. Results. Available research is focused on worst-case pandemic scenarios of Brazil and the United Kingdom, highlighting racialised discrimination and higher risks of migrant healthcare workers. The German data did not reveal significant differences between national-born and foreign-born healthcare workers for items related to health status including SARS-CoV-2 infection and vaccination, and perception of infection risk, protective workplace measures, and government measures, but items related to social participation and work conditions with higher infection risk indicate a higher burden of migrant healthcare workers. Conclusions. COVID-19 pandemic policy must include migrant healthcare workers, but simply adding the migration status is not enough. We introduce an intersectional health systems-related approach to understand how pandemic policies create social inequalities and how the protection of migrant healthcare workers may be improved.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.28.22273029

ABSTRACT

Introduction. This study analyses how healthcare workers (HCWs) perceived risks, protection and preventive measures during the COVID-19 pandemic in relation to medically approved risks and organisational measures. The aim is to explore blind spots of pandemic protection and make mental health needs of HCWs visible. Methods. We have chosen an optimal-case scenario of a high-income country with a well-resourced hospital sector and low HCW infection rate at the organisational level to explore governance gaps in HCW protection. A German multi-method hospital study at Hannover Medical School served as empirical case; document analysis, expert information and survey data (n=1163) were collected as part of a clinical study into SARS-CoV-2 serology testing during the second wave of the pandemic (November 2020-February 2021). Selected survey items included perceptions of risks, protection and preventive measures. Descriptive statistical analysis and regression were undertaken for gender, profession and COVID-19 patient care. Results. The results reveal a low risk of 1% medically approved infections among participants, but a much higher mean personal risk estimate of 15%. The majority (68.4%) expressed some to very strong fear of acquiring infection at the workplace. Individual protective behaviour and compliance with protective workplace measures were estimated as very high. Yet only about half of the respondents felt strongly protected by the employer; 12% even perceived no or little protection. Gender and contact with COVID-19 patients had no significant effect on the estimations of infection risks and protective workplace behaviour, but nursing was correlated with higher levels of personal risk estimations and fear of infection. Conclusions. A strong mismatch between low medically approved risk and personal risk perceptions of HCWs brings stressors and threats into view, that may be preventable through better information and risk communication and through investment in mental health and inclusion in pandemic preparedness plans.


Subject(s)
COVID-19 , Oculocerebrorenal Syndrome
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1200506.v1

ABSTRACT

Reports suggest that COVID-19 vaccine effectiveness is decreasing, either due to waning immune protection, emergence of new variants of concern, or both. Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) appeared to be superior in inducing protective immunity, and large scale second booster vaccination is ongoing. However, data comparing declining immunity after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. We longitudinally monitored immunity in ChAd/ChAd (n=41) and ChAd/BNT (n=88) vaccinated individuals and assessed the impact of a second booster with BNT in both groups. The second booster greatly augmented waning anti-spike IgG but only moderately increased spike-specific CD4+ and CD8+ T cells in both groups to cell frequencies already present after the boost. More importantly, the second booster efficiently restored neutralizing antibody responses against Alpha, Beta, Gamma, and Delta, but neutralizing activity against B.1.1.529 (Omicron) stayed severely impaired. Our data suggest that inferior SARS-CoV-2 specific immune responses after homologous ChAd/ChAd vaccination can be cured by a heterologous BNT vaccination. However, prior heterologous ChAd/BNT vaccination provides no additional benefit for spike-specific T cell immunity or neutralizing Omicron after the second boost.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.25.21268392

ABSTRACT

Reports suggest that COVID-19 vaccine effectiveness is decreasing, either due to waning immune protection, emergence of new variants of concern, or both. Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) appeared to be superior in inducing protective immunity, and large scale second booster vaccination is ongoing. However, data comparing declining immunity after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. We longitudinally monitored immunity in ChAd/ChAd (n=41) and ChAd/BNT (n=88) vaccinated individuals and assessed the impact of a second booster with BNT in both groups. The second booster greatly augmented waning anti-spike IgG but only moderately increased spike-specific CD4 + and CD8 + T cells in both groups to cell frequencies already present after the boost. More importantly, the second booster efficiently restored neutralizing antibody responses against Alpha, Beta, Gamma, and Delta, but neutralizing activity against B.1.1.529 (Omicron) stayed severely impaired. Our data suggest that inferior SARS-CoV-2 specific immune responses after homologous ChAd/ChAd vaccination can be cured by a heterologous BNT vaccination. However, prior heterologous ChAd/BNT vaccination provides no additional benefit for spike-specific T cell immunity or neutralizing Omicron after the second boost.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.12.472286

ABSTRACT

The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike-protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by Sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent or BNT162b2-vaccinated individuals with 10- to 44-fold higher efficiency than the spike of the Delta variant. Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1/BNT162b2-vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike. These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant.


Subject(s)
COVID-19
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-580444.v1

ABSTRACT

Cerebral venous thrombosis was reported as a rare but serious adverse event in young and middle-aged vaccinees following immunization with AstraZeneca’s ChAdOx1-nCov-19 vaccine. As a consequence, several European governments recommended using this vaccine only in individuals older than 60 years leaving millions of ChAd primed individuals with the decision to either receive a second shot of ChAd or a heterologous boost with mRNA-based vaccines. However, such combinations have not been tested so far. We used Hannover Medical School’s COVID-19 Contact (CoCo) Study cohort of health care professionals (HCP) to monitor ChAd primed immune responses before and three weeks after booster with ChAd or BioNTech/Pfizer’s BNT162b2. Whilst both vaccines boosted prime-induced immunity, BNT induced significantly higher frequencies of Spike-specific CD4 and CD8 T cells and, in particular, high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and the P.1 variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2).


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.16.21255412

ABSTRACT

Vaccine-induced neutralizing antibodies are key in combating the COVID-19 pandemic. However, delays of boost immunization due to limited availability of vaccines may leave individuals vulnerable to infection and disease for prolonged periods. The emergence of SARS-CoV-2 variants of concern (VOC), B.1.1.7 (United Kingdom), B.1.351 (South Africa) and P.1 (Brazil), may reinforce this issue with the latter two being able to evade control by antibodies. We assessed humoral and T cell responses against SARS-CoV-2 WT and VOC and endemic human coronaviruses (hCoV) that were induced after single and double vaccination with BNT162b2. Despite readily detectable IgG against the receptor-binding domain (RBD) of the SARS-CoV-2 S protein at day 14 after a single vaccination, inhibition of SARS-CoV-2 S-driven host cell entry was weak and particularly low for the B.1.351 variant. Frequencies of SARS-CoV-2 specific T cells were low in many vaccinees after application of a single dose and influenced by immunity against endemic hCoV. The second vaccination significantly boosted T cell frequencies reactive for WT, B.1.1.7 and B.1.351 variants. These results call into question whether neutralizing antibodies significantly contribute to protection against COVID-19 upon single vaccination and suggest that cellular immunity is central for the early defenses against COVID-19.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
8.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3661946

ABSTRACT

To investigate the role of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T-cell immunity and its relationship with antibody levels and pre-existing immunity against endemic human coronaviruses (huCoV) during disease and beyond, we analyzed patients with recovered (RC, n=178) and active Coronavirus Disease-2019 (COVID-19; AC, n=10) and healthy donors (HD, n=58). Overall, ACs had highest SARS-CoV-2 antibody levels against nucleocapsid (N) and spike (S) proteins but reduced antiviral T-cell immunity, whereas in RCs, antibody levels partially correlated with SARS-CoV-2-specific T-cell frequencies. Interestingly, humoral responses declined throughout convalescence, whereas T-cell immunity remained stable. RCs exhibited polyfunctional, mainly IFN-γ-secreting CD4 + effector memory T-cell responses. Humoral and cellular response towards huCoV strains in RCs with strong SARS-CoV-2 T-cell immunity implies a protective role of pre-existing immunity against huCoV. This study provides essential evidence-based data about stable protective T-cell immunity during disease and recovery which is essential to guide diagnosis and treatment of COVID-19.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL